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The Fourier transform of the (00, 2) line profile of amorphous carbon as defined by 

l+oo exp [ 2~zi(s-S(oo,~))x]ds s in  oza(00,2) (s m 8(00~ ~ ~ 
~(00,~)(x) = Ao(s) 

_~ ~(s -s(00,2)) 
with 

IAo(s)] ~ oc l(s) 

was made, where a(00,2) means the value of the (00, 2) spacing, say 3.51 A, which is related to the 
profile centre s(00,2) by the Bragg relation. 

The unfolded structure @0(x) of averaged convolution, which is defined as 

1 
@o(X) , @o(X) = ~ 2 {@~(x) , ~(x)} 

was obtained from ~(00,2)(x), where @l(x), @2(x) . . . . .  @N(x) represent the linear structures constituting 
all the crystallites of the material, and running parallel to their [00, 1] direction. 

The number-fraction of the crystallites composed of M atomic layers parallel to (00, 1) plane 
was obtained from the Fourier transform of line profile (00, 2) which would be observed when there 
were no irregularities in interlayer spacings at all, and which can be readily derived from @0(x). 
The number-fraction was found to be roughly proportional to 2 - i .  

Remarks were given for the nature of information which is to be obtained by the above method. 

1. Introduction 

The diffraction diagrams of polycrystal l ine substances, 
which are essential ly heterogeneous with respect to 
their  atomic structures, are thus to be interpreted in 
terms of dis t r ibut ion functions describing the statis- 
t ical  characteristics in the atomic structures of crys- 
talli tes which constitute the substance under  exam- 
ination. For instance, Ber taut  (1950) has given a 
formula giving the size dis t r ibut ion of crystalli tes from 
the observed line profile, which, however, is not 
applicable unless the profile observations are extended 
inf ini te ly  in reciprocal space. In  fact i t  demands  the 
second derivatives of the Fourier  t ransform of line 
profile to derive the dis t r ibut ion funct ion of crystall i te 
sizes. Fur ther  the formula ceases to be val id  when 
there are other causes of line broadening which make 
the observed profile unsymmetr ica l ,  such as the 
irregularities in in ter layer  spacings in the direction 
perpendicular  to the reflecting plane. 

In  this  paper  a method is described for deducing 
the size distribution o~ crystallltes ~rom the observed 
l ine profiles which are more or less confined to the 
neighbourhood of the profile centre, and is applied to 
the  (00, 2) line profile of amorphous carbon. 

2. Principle of analysis 

Let us consider a polycrystal l ine substance which gives 
rise to a Debye-Scherrer  line of index (hkl). The whole 

A p a r t  of this  work  was  carr ied ou t  a t  the  Mineralogical 
Ins t i tu te ,  F a c u l t y  of Science, Un ive r s i ty  of Tokyo .  

of the substance can be regarded as consti tuted of 
l inear structures @n(x)'s which are arranged perpen- 
dicular to the (hkl) plane and in terms of which the 
(hkl) line profile is interpreted. The precise meaning of 
those l inear structures are given in Appendix.  

When  we write the Fourier  t ransforms of Qn(X)'S as 
An(s)'s, the  (hkl) l ine profile is expressed as (Guinier, 
1956) 

N 
I(s) oc .~ IAn(s)] ~ - _~lA0(s)12. (1) 

n=l  

Equat ion  (1) means  tha t  the l inear structures @~(x)'s 
diffract  X-rays  independent ly  of each other, and  
consequently there is no way of defining the phase 
angles of diffracted X-rays at any  point  in the recip- 
rocal space. 

Let  us introduce here the unfolded structure @0(x) 
of the averaged convolution defined as 

1 ~ 
e0(x) • e0(x)= ~,~l{e~(x) • en(x)} • (2)$ 

Then the Fourier  t ransforms of both sides of (2) 
satisfy the relat ion (1) when Ao(s) is the Fourier  
t ransform of @0(x); 

Ads)  = @o(x) exp 2~isxdx .  (3) 

I t  follows that ,  though the substant ia l  phase as- 

.~ f (x)  * g(x) means  ~f(u)g(u--x)du. 
eJ 
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signments are impossible and even insignificant for the 
polycrystalline substances as remarked above, we can 
yet  assign formally the phase angles co(s) for the square- 
root of I(s); 

Ao(s) = I(s)½. exp 2~ico(s) (4) 

to obtain the structure ~0(x) as defined by (2), with 
the inversion of (3); 

~0(x) = exp ( - 2~isx) ds.  (5) 

The question now to be asked is, how to interpret 
the structure ~0(x) thus obtained in terms of the 
statistical parameters of ~n(x)'s. We postpone this 
question to § 2-1, and confine ourselves at present to 
the problem of obtaining the structure Q0(x) from the 
observed line profile. 

In  order to obtain ~0(x) with the aid of (5), the profile 
measurement must be extended infinitely in reciprocal 
space, which is evidently not feasible in practice. In 
this connexion a procedure was described (Doi, 1957, 
1960) which enables us to obtain as much information 
as possible in the limited region of reciprocal space, 
using the function: 

~(h~)(x) = I~ :Ao( s '+s (h~) )K(s ' ) exp ( -2~ i s ' x )ds '  (6) 

with 

s '= s-s(h~),  K(s') = sin z la~)s ' /~s '  
and a(~)  = 1/s(h~O, (7) 

where s(az~) means the position of the centre of the (hkl) 
profile. The function ~(a~o(x) can be calculated prac- 
tically with the knowledge of Ao(s) only in the neigh- 
bourhood of s=s(a~) where K(s') has appreciable 
values, provided tha t  there is no other Debye-  
Scherrer line there. 

I t  was also shown tha t  (Doi, 1957) 

f +oo 2 " ' ' 
q~(~)(x) = ~o(x ' )A(x-x ' )  exp 7as t~)x  dx , (8) 

with 

f ~ :  { 1 Ixl<½a(~) A(x) = K(s) exp ( -27dsx)ds  = 0 [xi > ½a(a~o , 

(9) 
which means tha t  ~(a~,)(x) is equal to the structure 
factor (hkl) of ~0(x) for the part  comprised between 
x +  (½)a(~o and x -  (½)a(~o. 

Suppose now tha t  the structure ~0(x) is expressed by 

~o(x) = ~ g m ( x - m a ( ~ t ) -  em)p(m) , (10) 

where g~ (x) is a function having a maximum peak of 
normalized area at x = 0 and more or less confined to 
the vicinity of the origin. That  is, the structure ~0(x) 
is regarded as constituted of atoms of electronic 
contents p(m) which are situated at ma(a~)+ sin. I t  is 
readily seen that ,  if the peaks in ~0(x) are all suf- 
ficiently narrow (Doi, 1960), 

~(h~*) (ma(h~*)) = p(m) exp (2~ris(h~o sin) 
(m= 0, _+1, _+ 2 . . . .  , e t c . ) ,  (II) 

which means tha t  the structure Q0(x) can be obtained 
with the profile measurement only in the neighbour- 
hood of s(h~z), so long as Qo(x) is described by finite sets 
of parameters, say p(m)'s and em's. 

2"1. The interpretation of Qo(x) in terms of statistical 
parameters of assembly ~n(x)'s 
The structure Q0(x) thus obtained does not neces- 

sarily correspond to any real structure present in the 
assembly Qn(x)'s which constitute the crystallites. But  
from (2) it is seen tha t  the self-convolution of ~0(x): 

V(x) = qo(x) * ~o(x) = 2 .X g,n ( x -  ma(l~z) - S,n) 
m m" 

• gm.(x--m'a(h~o-- sm.)p(m)p(m') (12) 

is significant in the sense tha t  it represents the atomic- 
pair distribution in the substance examined. 

Here, with a view to obtaining the size-distribution 
function of crystallites from ~0(x), we artificially let 
all the sin's be zero in ~0(x) and V(x), i.e. we have 

~*(x) = .~, g.~ ( x -  ma(,~))p(m) (13) 
m 

and 
V*(x)=e~(x  ) . e~(x). (14) 

V*(x) is the Fourier transform of a virtual line profile 
I*(s) which would be obtained i f  there were no lattice 
deformations at all tha t  make the line profile un- 
symmetrical, other structural parameters which 
broaden the profile symmetrically, such as the dis- 
tr ibution of crystallite sizes, being left unchanged. 

Now let 
V*(x) =.~, (g(M)/M) VM(x) , (15) 

M 

where VM(X) stands for the self-convolution of the 
linear lattice ~M(X) composed of M point-like atoms 
of unit electronic contents (Fig. 1). The meaning of 
this series expansion of V*(x) becomes obvious when 
we make the Fourier transforms of both sides of (15) 
(Guinier, 1956); 

I*(s') = ~ (g(M)/M) sin 2 (7eMa(h~z)s')/sin 2 (~a(akz)s'), 
(16) 

tha t  is, the coefficients of expansion g(M)/M, which 
we shall call hereafter the distribution function of 
crystallite sizes, represent the number-fraction of linear 
structures composed of M atoms in the substance 
examined. If it can be assumed, as in the case of 
amorphous carbons and graphites, tha t  all the crys- 
tallites are of p la ty  shapes with two faces both 
parallel to the reflecting plane and with the genera- 
trices perpendicular to it, g(M) represents directly the 
mass-fraction of crystallites having thickness Ma(nez). 

Now the problem to be solved is to determine the 
coefficients g(M)/M in (16) (and consequently in (15)) 
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vM (~) 0~ (~) 
(b) (o) 

Fig. 1. (a) Linear lattice composed of M point-like atoms 
(21/=5) of unit  electronic content  OM(x). (b) Its self- 
convolution VM(X)=~M(X) * 9M(X). 

so as to get the best fit between the observed and 
calculated profiles, t 

From the definition of VM(X) (Fig. 1) it is readily 
seen that ,  

g(M)/M= A V*(Ma(h~))- A V*(M + 1 .a(h~) (17) 
with 

A V*(M.a(a~z)) = V * ( M -  1 .a(hkZ))-- V*(M.a(hkz)) . (18) 

The equation (17) corresponds to the equation (22) in 
Bertaut 's  paper (Bertaut, 1950) which states tha t  the 
second derivatives of the Fourier transform of line 
profile U(x) gives the size distribution function. As 
pointed out by Bertaut  himself, however, the differen- 
tiation of Fourier transform demands precision in 
profile observations at the points extremely far away 
from the profile centre, as may be seen from the rela- 
tion (Bertaut, 1950), 

= -- I(s')4~es '2 exp 2~is'xds'. (19) 

On the other hand the derivatives or the differences 
of V*(x) appearing in equations (17) and (18) can be 
obtained without much errors up to those of the second 
order, because V*(x) is derived from the amplitude 
distribution modulated by the kernel K(s'), i.e. from 
the observed intensity distribution modulated by a 
function which decreases with s' as s '-2. 

3. T h e  d e t e r m i n a t i o n  of s i z e - d i s t r i b u t i o n  
funct ion  of a m o r p h o u s  carbon  

As an example of the method of analysis above 
described, the (00, 2) line profile of amorphous carbon 
was analyzed to give the distribution function of 
crystallite sizes in the direction perpendicular to 
(00, 1) planes. 

The sample~: used in this work was one derived from 
natural  gas by pyrolysis with CO, C02 and water 
vapour at  about I400 °C. The chemical analysis 
showed the content of fixed carbon to be 98.5%. 

t This kind of problem may  be solved by the least-squares 
method, as developed by Diamond (1958). But  this method 
of analysis m a y  require so much computational work tha t  it 
is hardly feasible to the case where there are causes of line 
broadening other than tha t  of finite crystallite sizes, as is the 
case in the example t reated here. 

Produced by Nippon Gas Kagaku Co., and furnished to 
the author through the courtesy of Toshiba Denko C~ 

Other physical and chemical properties were found 
almost identical with those of 'Thermal Black P-33' 
of Thermatomic Carbon Co., U.S.A. (H. Nagashima" 
private communication). 

< 

o o.~o 0.'20 o.3o o.4o (h -~) 
s = 2 sin 0 

A 

Fig. 2. Observed intensity distribution of amorphous carbon. 

The (00, 2) line profile was obtained by X-ray 
diffractometer with a proportional counter. The dif- 
fractometer was so adjusted that  only Cu K s  radiation 
was permitted to be recorded on the diffractograms. 
Fig. 2 shows the intensity distribution thus obtained. 
For the purpose of correcting for the Compton scat- 
tering, the Debye-Scherrer diagrams of well-crystal- 
lized pure graphites were observed. The background 
intensities of the graphite diagrams, corrected for the 
different compactness of materials, were substracted 
from the observed line profile of amorphous carbon. 
Finally the intensity curve was corrected for the 
polarization and geometrical factors, and multiplied 
by  s~]]~, where fc means the atomic form factor of 
carbon (McWeeny, 1952). Thus we have the function 
I(s) to be substituted in (4). 

Now, with a view to applying the procedures 
described in the preceding sections, one has to assign 
the phase angle w(s) to every point s in the Debye-  
Scherrer diagram. I t  is seen from equations (12)-(18), 
however, that  the distribution function g(M)/M to be 
obtained is not affected by the way with which the 
phase angle is allotted, because the distribution func- 
tion is to be derived from V(x)= ~o(x) . ~0(x), the 
unfolded structure ~0(x) being of use only for obtaining 
V(x) from the intensity distribution in the vicinity of 
the profile centre. 

Thus we can assume tha t  

~(8)=0, (20) 

which means tha t  00(x) is centrosymmetric with 
respect to the origin where one of the atoms con- 
stituting 00(x) is situated. In fact it was found tha t  
the distribution function was the same even when we 
assume in place of (20) tha t  

~(s)=½. (21) 

The profile centre s(00, 2) was found to be 0.285 A -1, 
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l~ (real) 

(a) 

[~ maginary) 

I ~ lb i5 2'0 i5 x a<00.2) 
(b) 

Fig. 8. The function ~O(oo,~)(x), in its real (a) and imaginary (b) 
components. 

corresponding interplanar spacing being a(oo,2~ = 
3.51 _~. These values were substi tuted in K(s') of (7). 
The integrand of (6) was then calculated and extra- 
p~lated until s = 0  and s--s(oo, 4), where the integrand 
vanishes. The function ~(00, ~)(x) was calculated after 
(6) giving the results as shown in Figs. 3(a) and (b). 

By sampling the values of ~.function at 

x--0,  ia¢00, e) ±2ac00, e), i3a(00, e), . . . , e t c . ,  

the parameters p(m)'s and em's were obtained after 
(11), hence the unfolded structure ~o(x) was con- 
structed using (10). We let then all the em'S be zero 
without modifying the p(m)'s, to obtain the function 
V*(x) by (13) and (14). Fig. 4 shows the results. 

The equations (17) and (18) were applied to V*(x) 
thus obtained, and the distribution function g(M)/M 
was calculated. The results, which were so normalized 
that 

.~ (g(M)/M) = 100%, (22) 
M 

are shown in Fig. 5, where the numerals represent the 
percent values of the number-fraction of crystallites 
constituted of M layers. I t  is noted tha t  the value for 
M = 1 represents not only the fraction of the crystal- 

v*(x) 

= 

Fig.  4. T h e  f u n c t i o n  V*(x). 

2~ 

1 2 3 4 A4 

Fig. 5. The distribution f ~ c t i o n  g(M)/M, the number- 
fraction of the crystallites constituted from M atomic 
layers parallel to (00, 1). It is seen that the values of g(M)/M 
are roughly proportional to 2 -M. 

fires composed of one atomic layer but includes the 
fraction of the non-organized carbon atoms as termed 
by Franklin (1950). One can see easily here that 
g(M)/M is roughly proportional to 2 -~. 

The values of g(M)IM were now substi tuted in (16) 
to calculate the theoretical line profile which would 
be expected for the assembly of crystallites having the 
size distribution of Fig. 5, when the layers were 
stacked without any irregularity in interlayer spacings. 
The comparison of observed and calculated line profiles 
is shown in Fig. 6, where one can see fairly good 
agreement between these two profiles except some t iny 
discrepancies due to the irregularities in interlayer 
spacings, which exist in reality in the material ex- 
amined. 

# (~) 

J / 

/ 

"\ 
/ \ 

i ' 

./ 

\ 

0"½2 0"~4 0"26 0"28 0"30 0"32 0"34 (~ -1 ) 
2 sin 0 

s= A 

Fig. 6. The comparison of observed and calculated intensity 
distributions. × observed a n d -  calculated. 
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4. Concluding remarks 

We have seen in the preceding sections tha t  when 
~0(x) is expressed by a set of finite number of pa- 
rameters, these are to be regarded as to represent in 
some way the statistical characteristics of the assembly 
el(x), ~2(x), . . . ,  ~iv(x) 

On the other hand, it was shown (Doi, 1957) tha t  
a kind of averaging operation was indispensably 
introduced by finite samplings of the points in recip- 
rocal space, even in the analysis of such a crystal 
tha t  the structure can be represented uniquely by a 
function ~(x), and consequently the phase angles are 
to be unequivocally defined for every point in recip- 
rocal space. That  is, if the points are sampled at a 
constant interval of 1 / a L ( L >  1), the structure to be 
obtained is not ~(x) itself but  the one averaged for 
x, x +_ aL,  x +_ 2aL,  . . . ,  x +_ haL ,  . . . ,  etc., which is de- 
noted by ~(x) L. 

Hence, strictly speaking, the procedure described in 
§§ 2-3 does not give the structure ~0(x) but  the struc- 
ture ~o(X) L defined as 

1 - - L  ~ , ~ =  ~ ~ o~n(~)~ , ~n(x) } . (23) 

The structure ~0(xi z means the value of ~0(x) averaged 
for x, x +_ aL ,  x +_ 2 a L  . . . .  , etc. t 

In  the analysis of carbon black described in § 3, 
observed intensities were sampled at an equal interval 
of l/a(00, 2)L with L = 2 8 ,  which means tha t  the value 
of L was taken so large tha t  there were in fact few 
crystallites for which M _> L (see Fig. 5), and hence 
we can assume tha t  

e - ~ L ~  ~0(~). (24) 
While in the structure analysis of disordered single 

crystals constituted of a number of coherent domains 
(mosaics) diffracting X-rays in an independent way, 
the diffuse scatterings should be interpreted in terms 
of ~0(xi L and not of ~(xi L. :But when a L  is not so 
large compared with the dimensions of coherent 
domains, each term in the right-hand side of (23) 
may be regarded as identical, hence we have 

~ , ~  ~ .  (25) 
The condition (25) is expected to hold for the structure 
previously analyzed by the author (Doi, 1960). 

profile I (s )  by projecting the distribution along the 
spherical shells centred at  the origin of the reciprocal 
space O. The projection is carried out within the range 
A B  in Fig. 7(a) of width 1/~, in which the spherical 
shells can be approximated by planes. 

In direct space (Fig. 7(b)) the volume of the crystal- 
lite is divided into a set of columns perpendicular to 
the (hlcl) plane and their diameters are of the order 
of (~. Suppose now that  all the crystallites present in 
the substance examined are divided in this way into 
a set of columns, and 0n(x) means the electronic dis- 
tribution of the nth  column projected upon a straight 
line perpendicular to the (hlcl) plane, then it is readily 
seen tha t  the Fourier transforms of Qn(x)'s satisfy the 
relation (1) and the linear structures On(x)'s the rela- 
tion (2). 

 -u-4 

) 
1o 

(o) (5) 

Fig. 7. Intensity distribution. 

For the case of the (00, 2) line profile of amorphous 
carbon treated in § 3, 1/~ must be of the order of 

. ao0,0 ) at the most, because the adjacent relpoint, 
(10, 2) or (01, 2), does not intervene in the (00, 2) 
profile. Accordingly the diameters of the columns, of 
which the crystallites are supposed to be constituted 
and in terms of which the line profile analysis is made, 
is of the order of a00 ' 0). Here a~0, 0) and a(t0, o) mean 
the unit cell translations in the plane parallel to the 
reflecting plane, of reciprocal and direct lattices 
respectively. 

The author is grateful to Prof. J. Kakinoki of 
Osaka City University for valuable discussions. 

APPENDIX 

A remark on the meaning of q.(x)  appearing in 
equations (1) and (2) 

Let the intensity distribution around the relpoint (hkl) 
given by a single crystallite be represented by a 
shaded area in Fig. 7(a), which give rise to the line 

t A similar result was obtained by Eastabrook & Wilson 
(1952) for the strain distribution function as derived from line- 
profile analyses. 

References 
BERTAUT, E. F. (1950). Acta Cryst. S, 14. 
DIAMOND, R. (1958). Acta Cryst. 11, 129. 
DoI, K. (1957). Bull .  Soc. Fran~. Mindr.  C~ist. LXXX, 

325. 
DoI, K. (1960). Acta Cryst. 13, 45. 
EASTABROOK, J. N. ($5 WILSON, A. J. C. (1952). Proc. 

Phys .  Soc. B, 65, 67. 
FRANKLIN, R. E. (1950). Acta Cryst. 3, 107. 
GUINIER, A. (1956). Thdorie et Technique de la Radio .  

cristallographie, chap. XII.  Paris: Dunod. 
MCWEENY, R. (1952). Acta Cryst. 4, 513. 


